Connect with us

Bioengineer

Successful crash test meets major milestone for nuclear deterrence program

Sandia team worked through COVID-19 challenges, delivered results on timeCredit: Photo by Bret Latter, Sandia National Laboratories ALBUQUERQUE, N.M. –…

Published

on

ALBUQUERQUE, N.M. — A full-scale crash test involving a semitruck impacting the side of the first prototype of a new weapons transporter successfully took place at Sandia National Laboratories this summer.

Using the labs’ sled track, rockets propelled the semitractor-trailer at highway speeds into the prototype, an over-the-road Mobile Guardian Transporter conceptualized and built from scratch. Data from the event will be used for qualification of the transporter and to better understand cargo response in accident scenarios for years to come.

This test met a major milestone for the National Nuclear Security Administration as part of the labs’ nuclear deterrence program, said Sandia Program Director Gary Laughlin. Eventually, the new transporters will replace the current fleet of vehicles that safely and securely move nuclear assets within the United States.

“Completing this milestone is one example of Sandia’s dedication to the Office of Secure Transportation and the nuclear deterrence program,” Laughlin said. “Very creatively and with the help of many teams throughout Sandia, Los Alamos and Lawrence Livermore national laboratories, we figured out how to build a new trailer and complete a test that was flawlessly executed.”

Full-scale crash test marked biggest transporter test in decades

Crash tests at this scale using transporter vehicles have not taken place at the labs for about 20 years, said Jim Redmond, Sandia senior manager over the program, adding that Sandia has never executed a test quite like this one at full scale.

“About two decades ago, Sandia crashed a truck into an immovable barrier, but this is the first time we’ve done a test in this configuration, where we took a truck at full capacity and propelled it down the track and hit our test article sitting idly at the end of it,” Redmond said. “In two decades, you can imagine how much technology has advanced in terms of our ability to measure responses of the trailer and its contents.”

One purpose of the crash test, said Sandia manager Daniel Wilcox, was to ensure the new fleet of semitrailer transporters will be able to keep cargo safe in the event of an unexpected crash.

Sandia’s primary mission is ensuring the U.S. nuclear arsenal is safe, secure and reliable. As part of that mission, and since the inception of nuclear deterrence, Sandia has played an important role in transportation, Redmond said.

“The transportation mission is a critical component of an effective nuclear deterrent,” he said. “It provides needed assurance to the American public and our allies of the safety and security of our stockpile. You’ve got to be able to ship nuclear assets safely and securely or you don’t have a deterrence program.”

Transporter prototype ‘started with clean sheet of paper’

Sandia manager Barry Boughton was part of the team that worked on the previous fleet of transporters that have been in use since the 1990s. Following testing on additional prototypes in coming years, the current set of transporters will be replaced by the Mobile Guardian Transporter fleet, which is expected to be in service beyond 2050.

Boughton said the transporter systems begin with demanding requirements that change with each fleet as technology and the operating environment evolve. From there, the design team begins creating a brand-new system.

“The Mobile Guardian Transporters are not an extension of the old trailers,” he said. “We started with a clean sheet of paper.”

Nearly everything that makes up the transporters is custom designed and built, with a few exceptions. It was a multiyear design effort to get to the point where Sandia could work with an external partner to build the road-ready trailer. Initially, the prototype didn’t have any electronics and finishing touches. Following the 13-month trailer build, the team worked for an additional six months assembling electronics before they began testing the prototype in normal and abnormal environments.

Normal environment tests included such activities as driving it on the road while measuring shock and vibration response and exposing the vehicle to thermal cycling while measuring the vehicle’s response to various temperatures.

From January until June, the team prepped the vehicle for the crash test by setting up data-acquisition instrumentation and configuring and installing representative cargo. Setting up the channels was one of the most challenging technical aspects of test setup, said Kylen Johns, lead on the prototype project.

“We had a goal of gathering an unprecedented amount of data, realizing that it would be extremely difficult in such a harsh environment,” Johns said. “To reduce risk, we built in redundancy to the systems and included peer reviewers in every step of the preparation. We were crashing a semi into another semi and protecting these super tiny, thin cables meant the difference between getting critical data or missing major objectives.”

During the test, more than 400 channels of data and video, including high speed video, were collected, said Redmond. Every sensor served a purpose and provided specific data that the team analyzes to make sure the transporter meets all requirements. The team will only build three prototypes, so every scrap of data is meaningful to the project.

Many teams came together for test day

The complexity of the setup required the multiorganization crash test execution team and other collaborating groups to remain “laser-focused” for months, Wilcox said, to ensure the crash date wasn’t delayed, the test objectives were met, and data wouldn’t be compromised.

The prototype was moved to the test site in June where employees continued preparing for the crash in pandemic conditions in the heat of the desert — running cables, fixing problems, soldering wires, setting up cameras, checking acquisitions systems and setting triggers.

On test day, final preparation started several hours before dawn. Around midday the test execution team, transporter team members and stakeholders stood at a safe distance from the sled track and watched the crash take place. There was a lot of buildup to that point, Redmond said, with the years-long effort resulting in a transporter assembly test that was over in a matter of seconds.

“I was glad to see the rockets fired; I was glad to see it was successful,” he said. “It was tense. The entire team including partners from LANL and Lawrence Livermore were excited and relieved. There’s a lot of pride among the team as well as the government sponsors that we are greatly increasing our understanding of accident environments.”

Karen Rogers, senior manager for Sandia’s validation and qualification team, oversees the group that designed and conducted the rocket-sled test. Rogers praised the seamless collaboration between teams, saying, “We worked in partnership, and at times side-by-side, to create all the elements that led to this successful test. It was gratifying to see the results of that hard work and the teamwork that made it happen.”

Test took place on time despite COVID-19 threat

Before the COVID-19 pandemic started to impact many Sandia operations in early March, activities were on track for the summer test, Wilcox said. Threat of the virus understandably complicated work across the program, but the team came together to keep things moving forward toward the test.

“There was a feeling of, ‘What are the impacts of the pandemic on this test — and can we really do this?’” Wilcox said. “Even though the unexpected challenge of COVID-19 added significant complications to an already-complex test, the crash was executed on the precise day it was planned before the pandemic, with no delay.”

Because completing the test on time was critical to the NNSA, much of the team continued working on site when 70% of labs employees started telecommuting in mid-March.

Industrial health and Sandia Environmental Safety & Health professionals helped the team work effectively in close quarters by requiring masks, checking ventilation systems and advising on how to take turns inside the vehicle, said Laughlin. The team’s procedures set a standard for social distancing at the labs.

###

Source: https://bioengineer.org/successful-crash-test-meets-major-milestone-for-nuclear-deterrence-program/

[ALT0]

Bioengineer

$1 million grant to address cold storage logistics in vaccine delivery

Credit: Penn State College of Engineering COVID-19 vaccines have been tested, validated and administered to millions of people around the

Published

on

COVID-19 vaccines have been tested, validated and administered to millions of people around the world. But in some countries, the vaccines have yet to arrive in great enough numbers.

One significant hurdle is that the vaccines must be stored between 36 and 46 degrees Fahrenheit to retain their full efficacy, according to the Centers for Disease Control. To ensure the proper temperature, the vaccines need a refrigerated supply chain, also known as a cold chain, as they are distributed across the globe.

“If they are in warm temperatures, COVID vaccines and other medications are susceptible to degradation, which means they lose potency,” said Medina, who heads the Medina Group Precision Therapeutics and Bioresponsive Materials Lab at Penn State. “And the cold storage supply chain is expensive to maintain, with several transport steps necessary from the manufacturer to the distributer to the provider facility.”

To address that challenge, Medina and his team plan to develop fluorochemical dispersants, known as “FTags,” which coat the proteins within the vaccine liquids to stabilize them thermally.

“The FTags dissolve the proteins in a fluorine-based liquid, which yields proteins that we believe may be stable at elevated temperatures, without compromising their structure or function,” Medina said. “When dissolved in the fluorine-based liquid, the proteins also are immune to contamination by microorganisms and enzymes.”

Fluorochemicals are used in a range of applications, such as in making surfaces resistant to scratches and chemical degradation, as in the case of non-stick cookware.

Eventually, Medina plans to study the use of fluorochemical coatings in other biological products, with the goal of eliminating the need to move any pharmaceutical via a cold chain.

“This will allow access to medications in places where currently there is not,” Medina said. “For example, a soldier at war could be exposed to a harmful chemical agent. A fluorochemical-coated protein, which can be carried without refrigeration, could neutralize that agent immediately. This is part of DARPA’s interest in supplying this grant.”

The grant is part of DARPA’s Young Faculty Award program, which provides funding, mentoring and networking opportunities to faculty early in their careers who plan to focus their research on Department of Defense and national security interests.

In 2020, Medina published a study in ACS Nano on delivering therapeutic medications directly to a precise area of the body through an acoustically sensitive carrier, guided by ultrasound. The proposed DARPA-funded study is a spin-off of that study’s findings.

“Janna Sloand, my former grad student who recently defended her doctoral research, came up with the coating technology in our last study,” Medina said. “It dovetails nicely with our new study, which will use those same coatings to take on the limitations of the cold chain.”

###

Source: https://bioengineer.org/1-million-grant-to-address-cold-storage-logistics-in-vaccine-delivery/

$1-million-grant-to-address-cold-storage-logistics-in-vaccine-delivery

Continue Reading

Bioengineer

Reduced microbial stability linked to soil carbon loss in active layer under alpine permafrost degra

Credit: NIEER Chinese researchers have recently discovered links between reduction in microbial stability and soil carbon loss in the active

Published

on

Chinese researchers have recently discovered links between reduction in microbial stability and soil carbon loss in the active layer of degraded alpine permafrost on the Qinghai-Tibet Plateau (QTP).

The researchers, headed by Prof. CHEN Shengyun from the Northwest Institute of Eco-Environment and Resources (NIEER) of the Chinese Academy of Sciences (CAS), and XUE Kai from University of Chinese Academy of Sciences, conducted a combined in-depth analysis of soil microbial communities and their co-occurrence networks in the active permafrost layer along an extensive gradient of permafrost degradation.

The QTP encompasses the largest extent of high-altitude mountain permafrost in the world. This permafrost is different than high-latitude permafrost and stores massive soil carbon. An often ignored characteristic of permafrost is that the carbon pool in the active layer soil is more active and directly affected by climate change, compared to deeper layers.

Triggered by climate warming, permafrost degradation may decrease soil carbon stability and induce massive carbon loss, thus leading to positive carbon-climate feedback. However, microbial-mediated mechanisms for carbon loss from the active layer soil in degraded permafrost still remain unclear.

In this study, the researchers found that alpine permafrost degradation reduced the stability of active layer microbial communities as evidenced by increased sensitivity of microbial composition to environmental change, promoted destabilizing network properties and reduced resistance to node or edge attacking of the microbial network.

They discovered that soil organic carbon loss in severely degraded permafrost is associated with increased microbial dissimilarity, thereby potentially contributing to a positive carbon feedback in alpine permafrost on the QTP.

###

The results were published in PNAS in an article entitled “Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation”.

This research was financially supported by the National Natural Science Foundation of China, the Strategic Priority Research Program (A) of CAS and the Second Tibetan Plateau Scientific Expedition and Research Program.

Triggered by climate warming, permafrost degradation may decrease soil carbon stability and induce massive carbon loss, thus leading to positive carbon-climate feedback. However, microbial-mediated mechanisms for carbon loss from the active layer soil in degraded permafrost still remain unclear.

Source: https://bioengineer.org/reduced-microbial-stability-linked-to-soil-carbon-loss-in-active-layer-under-alpine-permafrost-degra/

reduced-microbial-stability-linked-to-soil-carbon-loss-in-active-layer-under-alpine-permafrost-degra

Continue Reading

Bioengineer

SNMMI Image of the Year: PET imaging measures cognitive impairment in COVID-19 patients

Credit: G Blazhenets et al., Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of

Published

on

Credit: G Blazhenets et al., Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg.

Reston, VA–The effects of COVID-19 on the brain can be accurately measured with positron emission tomography (PET), according to research presented at the Society of Nuclear Medicine and Molecular Imaging (SNMMI) 2021 Annual Meeting. In the study, newly diagnosed COVID-19 patients, who required inpatient treatment and underwent PET brain scans, were found to have deficits in neuronal function and accompanying cognitive impairment, and in some, this impairment continued six months after their diagnosis. The detailed depiction of areas of cognitive impairment, neurological symptoms and comparison of impairment over a six-month time frame has been selected as SNMMI’s 2021 Image of the Year.

Each year, SNMMI chooses an image that best exemplifies the most promising advances in the field of nuclear medicine and molecular imaging. The state-of-the-art technologies captured in these images demonstrate the capacity to improve patient care by detecting disease, aiding diagnosis, improving clinical confidence, and providing a means of selecting appropriate treatments. This year, the SNMMI Henry N. Wagner, Jr., Image of the Year was chosen from more than 1,280 abstracts submitted to the meeting and voted on by reviewers and the society leadership.

“As the SARS-CoV-2 pandemic proceeds, it has become increasingly clear that neurocognitive long-term consequences occur not only in severe COVID-19 cases, but in mild and moderate cases as well. Neurocognitive deficits like impaired memory, disturbed concentration and cognitive problems may persist well beyond the acute phase of the disease,” said Ganna Blazhenets, PhD, a post-doctoral researcher in Medical Imaging at the University Medical Center Freiburg, in Freiburg, Germany.

To study cognitive impairment associated with COVID-19, researchers carried out a prospective study on recently diagnosed COVID-19 patients who required inpatient treatment for non-neurological complaints. A cognitive assessment was performed, followed by imaging with 18F-FDG PET if at least two new neurological symptoms were present. By comparing COVID-19 patients to controls, the Freiburg group established a COVID-19-related covariance pattern of brain metabolism with most prominent decreases in cortical regions. Across patients, the expression of this pattern showed a very high correlation with the patients’ cognitive performance.

Follow-up PET imaging was performed six months after the initial COVID-19 diagnosis. Imaging results showed a significant improvement in the neurocognitive deficits in most patients, accompanied by an almost complete normalization of the brain metabolism.

“We can clearly state that a significant recovery of regional neuronal function and cognition occurs for most COVID-19 patients based on the results of this study. However, it is important to recognize the evidence of longer-lasting deficits in neuronal function and accompanying cognitive deficits is still measurable in some patients six months after manifestation of disease,” noted Blazhenets. “As a result, post-COVID-19 patients with persistent cognitive complaints should be presented to a neurologist and possibly allocated to cognitive rehabilitation programs.”

“18F-FDG PET is an established biomarker of neuronal function and neuronal injury,” stated SNMMI’s Scientific Program Committee chair, Umar Mahmood, MD, PhD. “As shown the Image of the Year, it can be applied to unravel neuronal correlates of the cognitive decline in patients after COVID-19. Since 18F-FDG PET is widely available, it may therefore aid in the diagnostic work-up and follow-up in patients with persistent cognitive impairment after COVID-19.”

###

Abstract 41. “Altered regional cerebral function and its association with cognitive impairment in COVID 19: A prospective FDG PET study.” Ganna Blazhenets, Johannes Thurow, Lars Frings and Philipp Meyer, Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Nils Schroeter, Tobias Bormann, Cornelius Weiller, Andrea Dressing and Jonas Hosp; Department of Neurology and Clinical Neuroscience, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and Dirk Wagner, Department of Internal Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

All 2021 SNMMI Annual Meeting abstracts can be found online at https://jnm.snmjournals.org/content/62/supplement_1.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging, vital elements of precision medicine that allow diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes.

SNMMI’s members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

“As the SARS-CoV-2 pandemic proceeds, it has become increasingly clear that neurocognitive long-term consequences occur not only in severe COVID-19 cases, but in mild and moderate cases as well. Neurocognitive deficits like impaired memory, disturbed concentration and cognitive problems may persist well beyond the acute phase of the disease,” said Ganna Blazhenets, PhD, a post-doctoral researcher in Medical Imaging at the University Medical Center Freiburg, in Freiburg, Germany.

Source: https://bioengineer.org/snmmi-image-of-the-year-pet-imaging-measures-cognitive-impairment-in-covid-19-patients/

snmmi-image-of-the-year:-pet-imaging-measures-cognitive-impairment-in-covid-19-patients

Continue Reading

Title

Crunchbase13 hours ago

Square Rolls Up Afterpay As BNPL Market Stays Hot

Payments platform Square plans to buy Afterpay, an Australian buy now, pay later service, in an all-stock deal valued at...

Bioengineer19 hours ago

$1 million grant to address cold storage logistics in vaccine delivery

Credit: Penn State College of Engineering COVID-19 vaccines have been tested, validated and administered to millions of people around the

Cointelegraph4 days ago

The future of DeFi is spread across multiple blockchains

Creating interoperability, not competition: Multichain solutions will positively impact the blockchain space in terms of accessibility, innovation and economic viability.

Ventureburn4 days ago

ZwartTech launches Talent Foundation to equip Africans with digital skills

Lagos-based ZwartTech has announced the launch of its new edtech, Zwart Talent Foundation (ZTF) in a statement on 30 July...

CNBC6 days ago

Earnings

Corporate Company Earnings, Find Earnings Per Share and Earnings History Online

Bioengineer7 days ago

Reduced microbial stability linked to soil carbon loss in active layer under alpine permafrost degra

Credit: NIEER Chinese researchers have recently discovered links between reduction in microbial stability and soil carbon loss in the active

Reuters1 week ago

Chipmaker TSMC says too early to say on Germany expansion

Taiwan Semiconductor Manufacturing Co Ltd (TSMC) (2330.TW) said on Monday that it was too early to say whether it will...

Bioengineer1 week ago

SNMMI Image of the Year: PET imaging measures cognitive impairment in COVID-19 patients

Credit: G Blazhenets et al., Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of

Techcrunch1 week ago

The DL on CockroachDB – TechCrunch

As college students at Berkeley, Spencer Kimball and Peter Mattis created a successful open-source graphics program, GIMP, which got the...

CNBC1 week ago

International: Top News And Analysis

CNBC International is the world leader for news on business, technology, China, trade, oil prices, the Middle East and markets.

Review

    Select language

    Trending