Connect with us

Bioengineer

Debris of stellar explosion found at unusual location

eROSITA space telescope finds largest supernova remnant ever discovered with X-raysCredit: eROSITA/MPE (X-ray), CHIPASS / SPASS / N. Hurley-Walker, ICRAR-Curtin

Published

on

eROSITA space telescope finds largest supernova remnant ever discovered with X-rays

Credit: eROSITA/MPE (X-ray), CHIPASS / SPASS / N. Hurley-Walker, ICRAR-Curtin (Radio)

In the first all-sky survey by the eROSITA X-ray telescope onboard SRG, astronomers at the Max Planck Institute for Extraterrestrial Physics have identified a previously unknown supernova remnant, dubbed “Hoinga”. The finding was confirmed in archival radio data and marks the first discovery of a joint Australian-eROSITA partnership established to explore our Galaxy using multiple wavelengths, from low-frequency radio waves to energetic X-rays. The Hoinga supernova remnant is very large and located far from the galactic plane – a surprising first finding – implying that the next years might bring many more discoveries.

Massive stars end their lives in gigantic supernova explosions when the fusion processes in their interiors no longer produce enough energy to counter their gravitational collapse. But even with hundreds of billions of stars in a galaxy, these events are pretty rare. In our Milky Way, astronomers estimate that a supernova should happen on average every 30 to 50 years. While the supernova itself is only observable on a timescale of months, their remnants can be detected for about 100 000 years. These remnants are composed of the material ejected by the exploding star at high velocities and forming shocks when hitting the surrounding interstellar medium.

About 300 such supernova remnants are known today – much less than the estimated 1200 that should be observable throughout our home Galaxy. So, either astrophysicists have misunderstood the supernova rate or a large majority has been overlooked so far. An international team of astronomers are now using the all-sky scans of the eROSITA X-ray telescope to look for previously unknown supernova remnants. With temperatures of millions of the degrees, the debris of such supernovae emits high-energy radiation, i.e. they should show up in the high-quality X-ray survey data.

“We were very surprised that the first supernova remnant popped up straight away,” says Werner Becker at the Max Planck Institute for Extraterrestrial Physics. Named after the first author’s hometown’s Roman name, “Hoinga” is the largest supernova remnant ever discovered in X-rays. With a diameter of about 4.4 degrees, it covers an area about 90 times bigger than the size of the full Moon. “Moreover, it lies very far off the galactic plane, which is very unusual,” he adds. Most previous searches for supernova remnants have concentrated on the disk of our galaxy, where star formation activity is highest and stellar remnants therefore should be more numerous, but it seems that many supernova remnants have been overlooked by this search strategy.

After the astronomers found the object in the eROSITA all-sky data, they turned to other resources to confirm its nature. Hoinga is – although barely – visible also in data taken by the ROSAT X-ray telescope 30 years ago, but nobody noticed it before due to its faintness and its location at high galactic latitude. However, the real confirmation came from radio data, the spectral band where 90% of all known supernova remnants were found so far.

“We went through archival radio data and it had been sitting there, just waiting to be discovered,” marvels Natasha Walker-Hurley, from the Curtin University node of the International Centre for Radio Astronomy Research in Australia. “The radio emission in 10-year-old surveys clearly confirmed that Hoinga is a supernova remnant, so there may be even more of these out there waiting for keen eyes.”

The eROSITA X-ray telescope will perform a total of eight all-sky surveys and is about 25 times more sensitive than its predecessor ROSAT. Both observatories were designed, build and are operated by the Max Planck Institute for Extraterrestrial Physics. The astronomers expected to discover new supernova remnants in its X-ray data over the next few years, but they were surprised to identify one so early in the programme. Combined with the fact that the signal is already present in decades-old data, this implies that many supernova remnants might have been overlooked in the past due to low-surface brightness, being in unusual locations or because of other nearby emission from brighter sources. Together with upcoming radio surveys, the eROSITA X-ray survey shows great promise for finding many of the missing supernova remnants, helping to solve this long-standing astrophysical mystery.

###

Original publication

W. Becker, N. Hurley-Walker, Ch. Weinberger, L. Nicastro, M. G. F. Mayer, A. Merloni, J. Sanders
Hoinga – A Supernova Remnant Discovered in the SRG/eROSITA All-Sky Survey eRASS1
Astronomy & Astrophysics, accepted 12 February 2021

https://www.mpg.de/16527751/0302-ext0-giant-cloud-found-at-unusual-location-151510-x

Source: https://bioengineer.org/debris-of-stellar-explosion-found-at-unusual-location/

debris-of-stellar-explosion-found-at-unusual-location

Bioengineer

$1 million grant to address cold storage logistics in vaccine delivery

Credit: Penn State College of Engineering COVID-19 vaccines have been tested, validated and administered to millions of people around the

Published

on

COVID-19 vaccines have been tested, validated and administered to millions of people around the world. But in some countries, the vaccines have yet to arrive in great enough numbers.

One significant hurdle is that the vaccines must be stored between 36 and 46 degrees Fahrenheit to retain their full efficacy, according to the Centers for Disease Control. To ensure the proper temperature, the vaccines need a refrigerated supply chain, also known as a cold chain, as they are distributed across the globe.

“If they are in warm temperatures, COVID vaccines and other medications are susceptible to degradation, which means they lose potency,” said Medina, who heads the Medina Group Precision Therapeutics and Bioresponsive Materials Lab at Penn State. “And the cold storage supply chain is expensive to maintain, with several transport steps necessary from the manufacturer to the distributer to the provider facility.”

To address that challenge, Medina and his team plan to develop fluorochemical dispersants, known as “FTags,” which coat the proteins within the vaccine liquids to stabilize them thermally.

“The FTags dissolve the proteins in a fluorine-based liquid, which yields proteins that we believe may be stable at elevated temperatures, without compromising their structure or function,” Medina said. “When dissolved in the fluorine-based liquid, the proteins also are immune to contamination by microorganisms and enzymes.”

Fluorochemicals are used in a range of applications, such as in making surfaces resistant to scratches and chemical degradation, as in the case of non-stick cookware.

Eventually, Medina plans to study the use of fluorochemical coatings in other biological products, with the goal of eliminating the need to move any pharmaceutical via a cold chain.

“This will allow access to medications in places where currently there is not,” Medina said. “For example, a soldier at war could be exposed to a harmful chemical agent. A fluorochemical-coated protein, which can be carried without refrigeration, could neutralize that agent immediately. This is part of DARPA’s interest in supplying this grant.”

The grant is part of DARPA’s Young Faculty Award program, which provides funding, mentoring and networking opportunities to faculty early in their careers who plan to focus their research on Department of Defense and national security interests.

In 2020, Medina published a study in ACS Nano on delivering therapeutic medications directly to a precise area of the body through an acoustically sensitive carrier, guided by ultrasound. The proposed DARPA-funded study is a spin-off of that study’s findings.

“Janna Sloand, my former grad student who recently defended her doctoral research, came up with the coating technology in our last study,” Medina said. “It dovetails nicely with our new study, which will use those same coatings to take on the limitations of the cold chain.”

###

Source: https://bioengineer.org/1-million-grant-to-address-cold-storage-logistics-in-vaccine-delivery/

$1-million-grant-to-address-cold-storage-logistics-in-vaccine-delivery

Continue Reading

Bioengineer

Reduced microbial stability linked to soil carbon loss in active layer under alpine permafrost degra

Credit: NIEER Chinese researchers have recently discovered links between reduction in microbial stability and soil carbon loss in the active

Published

on

Chinese researchers have recently discovered links between reduction in microbial stability and soil carbon loss in the active layer of degraded alpine permafrost on the Qinghai-Tibet Plateau (QTP).

The researchers, headed by Prof. CHEN Shengyun from the Northwest Institute of Eco-Environment and Resources (NIEER) of the Chinese Academy of Sciences (CAS), and XUE Kai from University of Chinese Academy of Sciences, conducted a combined in-depth analysis of soil microbial communities and their co-occurrence networks in the active permafrost layer along an extensive gradient of permafrost degradation.

The QTP encompasses the largest extent of high-altitude mountain permafrost in the world. This permafrost is different than high-latitude permafrost and stores massive soil carbon. An often ignored characteristic of permafrost is that the carbon pool in the active layer soil is more active and directly affected by climate change, compared to deeper layers.

Triggered by climate warming, permafrost degradation may decrease soil carbon stability and induce massive carbon loss, thus leading to positive carbon-climate feedback. However, microbial-mediated mechanisms for carbon loss from the active layer soil in degraded permafrost still remain unclear.

In this study, the researchers found that alpine permafrost degradation reduced the stability of active layer microbial communities as evidenced by increased sensitivity of microbial composition to environmental change, promoted destabilizing network properties and reduced resistance to node or edge attacking of the microbial network.

They discovered that soil organic carbon loss in severely degraded permafrost is associated with increased microbial dissimilarity, thereby potentially contributing to a positive carbon feedback in alpine permafrost on the QTP.

###

The results were published in PNAS in an article entitled “Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation”.

This research was financially supported by the National Natural Science Foundation of China, the Strategic Priority Research Program (A) of CAS and the Second Tibetan Plateau Scientific Expedition and Research Program.

Triggered by climate warming, permafrost degradation may decrease soil carbon stability and induce massive carbon loss, thus leading to positive carbon-climate feedback. However, microbial-mediated mechanisms for carbon loss from the active layer soil in degraded permafrost still remain unclear.

Source: https://bioengineer.org/reduced-microbial-stability-linked-to-soil-carbon-loss-in-active-layer-under-alpine-permafrost-degra/

reduced-microbial-stability-linked-to-soil-carbon-loss-in-active-layer-under-alpine-permafrost-degra

Continue Reading

Bioengineer

SNMMI Image of the Year: PET imaging measures cognitive impairment in COVID-19 patients

Credit: G Blazhenets et al., Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of

Published

on

Credit: G Blazhenets et al., Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg.

Reston, VA–The effects of COVID-19 on the brain can be accurately measured with positron emission tomography (PET), according to research presented at the Society of Nuclear Medicine and Molecular Imaging (SNMMI) 2021 Annual Meeting. In the study, newly diagnosed COVID-19 patients, who required inpatient treatment and underwent PET brain scans, were found to have deficits in neuronal function and accompanying cognitive impairment, and in some, this impairment continued six months after their diagnosis. The detailed depiction of areas of cognitive impairment, neurological symptoms and comparison of impairment over a six-month time frame has been selected as SNMMI’s 2021 Image of the Year.

Each year, SNMMI chooses an image that best exemplifies the most promising advances in the field of nuclear medicine and molecular imaging. The state-of-the-art technologies captured in these images demonstrate the capacity to improve patient care by detecting disease, aiding diagnosis, improving clinical confidence, and providing a means of selecting appropriate treatments. This year, the SNMMI Henry N. Wagner, Jr., Image of the Year was chosen from more than 1,280 abstracts submitted to the meeting and voted on by reviewers and the society leadership.

“As the SARS-CoV-2 pandemic proceeds, it has become increasingly clear that neurocognitive long-term consequences occur not only in severe COVID-19 cases, but in mild and moderate cases as well. Neurocognitive deficits like impaired memory, disturbed concentration and cognitive problems may persist well beyond the acute phase of the disease,” said Ganna Blazhenets, PhD, a post-doctoral researcher in Medical Imaging at the University Medical Center Freiburg, in Freiburg, Germany.

To study cognitive impairment associated with COVID-19, researchers carried out a prospective study on recently diagnosed COVID-19 patients who required inpatient treatment for non-neurological complaints. A cognitive assessment was performed, followed by imaging with 18F-FDG PET if at least two new neurological symptoms were present. By comparing COVID-19 patients to controls, the Freiburg group established a COVID-19-related covariance pattern of brain metabolism with most prominent decreases in cortical regions. Across patients, the expression of this pattern showed a very high correlation with the patients’ cognitive performance.

Follow-up PET imaging was performed six months after the initial COVID-19 diagnosis. Imaging results showed a significant improvement in the neurocognitive deficits in most patients, accompanied by an almost complete normalization of the brain metabolism.

“We can clearly state that a significant recovery of regional neuronal function and cognition occurs for most COVID-19 patients based on the results of this study. However, it is important to recognize the evidence of longer-lasting deficits in neuronal function and accompanying cognitive deficits is still measurable in some patients six months after manifestation of disease,” noted Blazhenets. “As a result, post-COVID-19 patients with persistent cognitive complaints should be presented to a neurologist and possibly allocated to cognitive rehabilitation programs.”

“18F-FDG PET is an established biomarker of neuronal function and neuronal injury,” stated SNMMI’s Scientific Program Committee chair, Umar Mahmood, MD, PhD. “As shown the Image of the Year, it can be applied to unravel neuronal correlates of the cognitive decline in patients after COVID-19. Since 18F-FDG PET is widely available, it may therefore aid in the diagnostic work-up and follow-up in patients with persistent cognitive impairment after COVID-19.”

###

Abstract 41. “Altered regional cerebral function and its association with cognitive impairment in COVID 19: A prospective FDG PET study.” Ganna Blazhenets, Johannes Thurow, Lars Frings and Philipp Meyer, Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Nils Schroeter, Tobias Bormann, Cornelius Weiller, Andrea Dressing and Jonas Hosp; Department of Neurology and Clinical Neuroscience, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and Dirk Wagner, Department of Internal Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

All 2021 SNMMI Annual Meeting abstracts can be found online at https://jnm.snmjournals.org/content/62/supplement_1.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging, vital elements of precision medicine that allow diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes.

SNMMI’s members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

“As the SARS-CoV-2 pandemic proceeds, it has become increasingly clear that neurocognitive long-term consequences occur not only in severe COVID-19 cases, but in mild and moderate cases as well. Neurocognitive deficits like impaired memory, disturbed concentration and cognitive problems may persist well beyond the acute phase of the disease,” said Ganna Blazhenets, PhD, a post-doctoral researcher in Medical Imaging at the University Medical Center Freiburg, in Freiburg, Germany.

Source: https://bioengineer.org/snmmi-image-of-the-year-pet-imaging-measures-cognitive-impairment-in-covid-19-patients/

snmmi-image-of-the-year:-pet-imaging-measures-cognitive-impairment-in-covid-19-patients

Continue Reading

Title

Crunchbase13 hours ago

Square Rolls Up Afterpay As BNPL Market Stays Hot

Payments platform Square plans to buy Afterpay, an Australian buy now, pay later service, in an all-stock deal valued at...

Bioengineer19 hours ago

$1 million grant to address cold storage logistics in vaccine delivery

Credit: Penn State College of Engineering COVID-19 vaccines have been tested, validated and administered to millions of people around the

Cointelegraph4 days ago

The future of DeFi is spread across multiple blockchains

Creating interoperability, not competition: Multichain solutions will positively impact the blockchain space in terms of accessibility, innovation and economic viability.

Ventureburn4 days ago

ZwartTech launches Talent Foundation to equip Africans with digital skills

Lagos-based ZwartTech has announced the launch of its new edtech, Zwart Talent Foundation (ZTF) in a statement on 30 July...

CNBC6 days ago

Earnings

Corporate Company Earnings, Find Earnings Per Share and Earnings History Online

Bioengineer7 days ago

Reduced microbial stability linked to soil carbon loss in active layer under alpine permafrost degra

Credit: NIEER Chinese researchers have recently discovered links between reduction in microbial stability and soil carbon loss in the active

Reuters1 week ago

Chipmaker TSMC says too early to say on Germany expansion

Taiwan Semiconductor Manufacturing Co Ltd (TSMC) (2330.TW) said on Monday that it was too early to say whether it will...

Bioengineer1 week ago

SNMMI Image of the Year: PET imaging measures cognitive impairment in COVID-19 patients

Credit: G Blazhenets et al., Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of

Techcrunch1 week ago

The DL on CockroachDB – TechCrunch

As college students at Berkeley, Spencer Kimball and Peter Mattis created a successful open-source graphics program, GIMP, which got the...

CNBC1 week ago

International: Top News And Analysis

CNBC International is the world leader for news on business, technology, China, trade, oil prices, the Middle East and markets.

Review

    Select language

    Trending